99 research outputs found

    Analysis of peer-to-peer electricity trading models in a grid-connected microgrid

    Get PDF
    The thesis proposed an investigation on the implementation of peer-to-peer (P2P) energy transaction platforms in power systems as a possible energy management solution to deal with distributed generation (DG) and renewable energy sources (RES) penetration. Firstly, a state of the art of the current P2P trading technologies development is provided, reviewing and analysing several projects carried out in this field in recent years and doing a comparison of the models, considering their commonalities, strengths and shortcomings, along with.an overview of the main techniques utilized. In the second stage, the focus shifts on the presentation of the structure of the system used in the case study investigated in the project. A multi agent system (MAS) integrated with a micro grid management platform (μGIM) acts in a grid connected microgrid located in an office building, equipped with solar panels (PVs) to operate energy transactions among different agents (prosumers/consumers). Each agent is represented by a tenant of a zone in the building, which owns a part of the total photovoltaic generation. From the starting point of the English auction model, initially used in the trading platform, two new algorithms have been implemented in the system in an attempt to improve the efficiency of the trading process. The algorithms formulation is based on the analysis of the initial model behaviour and results, and is supported by the state of art provided in the first chapter. A specific simulation platform was used to run the model using consumption data recorded from previous week of monitoring, in order to compare different trading algorithms working on the same consumption/generation profile. The developments obtained from this study proves the capabilities of the P2P energy trading to advantage the end users, allowing them to manage their own energy and pursue their personal goals. They also emphasize that this type of models have still a good improvement margin and with further studies they can represent a key element in the future smart grids and decentralized systems

    Rapid Annotation of Anonymous Sequences from Genome Projects Using Semantic Similarities and a Weighting Scheme in Gene Ontology

    Get PDF
    Background: Large-scale sequencing projects have now become routine lab practice and this has led to the development of a new generation of tools involving function prediction methods, bringing the latter back to the fore. The advent of Gene Ontology, with its structured vocabulary and paradigm, has provided computational biologists with an appropriate means for this task. Methodology: We present here a novel method called ARGOT (Annotation Retrieval of Gene Ontology Terms) that is able to process quickly thousands of sequences for functional inference. The tool exploits for the first time an integrated approach which combines clustering of GO terms, based on their semantic similarities, with a weighting scheme which assesses retrieved hits sharing a certain number of biological features with the sequence to be annotated. These hits may be obtained by different methods and in this work we have based ARGOT processing on BLAST results. Conclusions: The extensive benchmark involved 10,000 protein sequences, the complete S. cerevisiae genome and a small subset of proteins for purposes of comparison with other available tools. The algorithm was proven to outperform existing methods and to be suitable for function prediction of single proteins due to its high degree of sensitivity, specificity and coverage

    Identification of candidate genes associated with tolerance to apple replant disease by genome-wide transcriptome analysis

    Get PDF
    Apple replant disease (ARD) is a worldwide economic risk in apple cultivation for fruit tree nurseries and fruit growers. Several studies on the reaction of apple plants to ARD are documented but less is known about the genetic mechanisms behind this symptomatology. RNA-seq analysis is a powerful tool for revealing candidate genes that are involved in the molecular responses to biotic stresses in plants. The aim of our work was to find differentially expressed genes in response to ARD in Malus. For this, we compared transcriptome data of the rootstock ‘M9’ (susceptible) and the wild apple genotype M. ×robusta 5 (Mr5, tolerant) after cultivation in ARD soil and disinfected ARD soil, respectively. When comparing apple plantlets grown in ARD soil to those grown in disinfected ARD soil, 1,206 differentially expressed genes (DEGs) were identified based on a log2 fold change, (LFC) ≥ 1 for up– and ≤ −1 for downregulation (p < 0.05). Subsequent validation revealed a highly significant positive correlation (r = 0.91; p < 0.0001) between RNA-seq and RT-qPCR results indicating a high reliability of the RNA-seq data. PageMan analysis showed that transcripts of genes involved in gibberellic acid (GA) biosynthesis were significantly enriched in the DEG dataset. Most of these GA biosynthesis genes were associated with functions in cell wall stabilization. Further genes were related to detoxification processes. Genes of both groups were expressed significantly higher in Mr5, suggesting that the lower susceptibility to ARD in Mr5 is not due to a single mechanism. These findings contribute to a better insight into ARD response in susceptible and tolerant apple genotypes. However, future research is needed to identify the defense mechanisms, which are most effective for the plant to overcome ARD

    Identification of Candidate Genes Associated With Tolerance to Apple Replant Disease by Genome-Wide Transcriptome Analysis

    Get PDF
    Apple replant disease (ARD) is a worldwide economic risk in apple cultivation for fruit tree nurseries and fruit growers. Several studies on the reaction of apple plants to ARD are documented but less is known about the genetic mechanisms behind this symptomatology. RNA-seq analysis is a powerful tool for revealing candidate genes that are involved in the molecular responses to biotic stresses in plants. The aim of our work was to find differentially expressed genes in response to ARD in Malus. For this, we compared transcriptome data of the rootstock ‘M9’ (susceptible) and the wild apple genotype M. ×robusta 5 (Mr5, tolerant) after cultivation in ARD soil and disinfected ARD soil, respectively. When comparing apple plantlets grown in ARD soil to those grown in disinfected ARD soil, 1,206 differentially expressed genes (DEGs) were identified based on a log2 fold change, (LFC) ≥ 1 for up– and ≤ −1 for downregulation (p < 0.05). Subsequent validation revealed a highly significant positive correlation (r = 0.91; p < 0.0001) between RNA-seq and RT-qPCR results indicating a high reliability of the RNA-seq data. PageMan analysis showed that transcripts of genes involved in gibberellic acid (GA) biosynthesis were significantly enriched in the DEG dataset. Most of these GA biosynthesis genes were associated with functions in cell wall stabilization. Further genes were related to detoxification processes. Genes of both groups were expressed significantly higher in Mr5, suggesting that the lower susceptibility to ARD in Mr5 is not due to a single mechanism. These findings contribute to a better insight into ARD response in susceptible and tolerant apple genotypes. However, future research is needed to identify the defense mechanisms, which are most effective for the plant to overcome ARD. Copyright © 2022 Reim, Winkelmann, Cestaro, Rohr and Flachowsky

    Exploration of alternative splicing events in ten different grapevine cultivars

    Get PDF
    Background: The complex dynamics of gene regulation in plants are still far from being fully understood. Among many factors involved, alternative splicing (AS) in particular is one of the least well documented. For many years, AS has been considered of less relevant in plants, especially when compared to animals, however, since the introduction of next generation sequencing techniques the number of plant genes believed to be alternatively spliced has increased exponentially. Results: Here, we performed a comprehensive high-throughput transcript sequencing of ten different grapevine cultivars, which resulted in the first high coverage atlas of the grape berry transcriptome. We also developed findAS, a software tool for the analysis of alternatively spliced junctions. We demonstrate that at least 44 % of multi-exonic genes undergo AS and a large number of low abundance splice variants is present within the 131.622 splice junctions we have annotated from Pinot noir. Conclusions: Our analysis shows that similar to 70 % of AS events have relatively low expression levels, furthermore alternative splice sites seem to be enriched near the constitutive ones in some extent showing the noise of the splicing mechanisms. However, AS seems to be extensively conserved among the 10 cultivars

    Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains

    Get PDF
    BACKGROUND: Oceans cover approximately 70% of the Earth's surface with an average depth of 3800 m and a pressure of 38 MPa, thus a large part of the biosphere is occupied by high pressure environments. Piezophilic (pressure-loving) organisms are adapted to deep-sea life and grow optimally at pressures higher than 0.1 MPa. To better understand high pressure adaptation from a genomic point of view three different Photobacterium profundum strains were compared. Using the sequenced piezophile P. profundum strain SS9 as a reference, microarray technology was used to identify the genomic regions missing in two other strains: a pressure adapted strain (named DSJ4) and a pressure-sensitive strain (named 3TCK). Finally, the transcriptome of SS9 grown under different pressure (28 MPa; 45 MPa) and temperature (4°C; 16°C) conditions was analyzed taking into consideration the differentially expressed genes belonging to the flexible gene pool. RESULTS: These studies indicated the presence of a large flexible gene pool in SS9 characterized by various horizontally acquired elements. This was verified by extensive analysis of GC content, codon usage and genomic signature of the SS9 genome. 171 open reading frames (ORFs) were found to be specifically absent or highly divergent in the piezosensitive strain, but present in the two piezophilic strains. Among these genes, six were found to also be up-regulated by high pressure. CONCLUSION: These data provide information on horizontal gene flow in the deep sea, provide additional details of P. profundum genome expression patterns and suggest genes which could perform critical functions for abyssal survival, including perhaps high pressure growth

    Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Downy mildew, caused by the oomycete <it>Plasmopara viticola</it>, is a serious disease in <it>Vitis </it><it>vinifera</it>, the most commonly cultivated grapevine species. Several wild <it>Vitis </it>species have instead been found to be resistant to this pathogen and have been used as a source to introgress resistance into a <it>V. vinifera </it>background. Stilbenoids represent the major phytoalexins in grapevine, and their toxicity is closely related to the specific compound. The aim of this study was to assess the resistance response to <it>P. viticola </it>of the Merzling × Teroldego cross by profiling the stilbenoid content of the leaves of an entire population and the transcriptome of resistant and susceptible individuals following infection.</p> <p>Results</p> <p>A three-year analysis of the population's response to artificial inoculation showed that individuals were distributed in nine classes ranging from total resistance to total susceptibility. In addition, quantitative metabolite profiling of stilbenoids in the population, carried out using HPLC-DAD-MS, identified three distinct groups differing according to the concentrations present and the complexity of their profiles. The high producers were characterized by the presence of <it>trans</it>-resveratrol, <it>trans</it>-piceid, <it>trans</it>-pterostilbene and up to thirteen different viniferins, nine of them new in grapevine.</p> <p>Accumulation of these compounds is consistent with a resistant phenotype and suggests that they may contribute to the resistance response.</p> <p>A preliminary transcriptional study using cDNA-AFLP selected a set of genes modulated by the oomycete in a resistant genotype. The expression of this set of genes in resistant and susceptible genotypes of the progeny population was then assessed by comparative microarray analysis.</p> <p>A group of 57 genes was found to be exclusively modulated in the resistant genotype suggesting that they are involved in the grapevine-<it>P. viticola </it>incompatible interaction. Functional annotation of these transcripts revealed that they belong to the categories defense response, photosynthesis, primary and secondary metabolism, signal transduction and transport.</p> <p>Conclusions</p> <p>This study reports the results of a combined metabolic and transcriptional profiling of a grapevine population segregating for resistance to <it>P. viticola</it>. Some resistant individuals were identified and further characterized at the molecular level. These results will be valuable to future grapevine breeding programs.</p

    Dissecting the effect of soil on plant phenology and berry transcriptional plasticity in two Italian grapevine varieties (Vitis vinifera L.)

    Get PDF
    Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions. The terroir, namely the set of agri-environmental factors to which a variety is subjected, can influence the phenotype at the physiological, molecular, and biochemical level, representing an important phenomenon connected to the typicality of productions. We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables, except soil, were kept as constant as possible. We isolated the effect of soils collected from different areas, on phenology, physiology, and transcriptional responses of skin and flesh of a red and a white variety of great economic value: Corvina and Glera. Molecular results, together with physio-phenological parameters, suggest a specific effect of soil on grapevine plastic response, highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh. Using a novel statistical approach, we identified clusters of plastic genes subjected to the specific influence of soil. These findings could represent an issue of applicative value, posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination, to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect
    • …
    corecore